

American Institute of Aeronautics and Astronautics

1

Contract-Based Byzantine Resilience in Spacecraft Swarms

Michael Sievers1

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

Azad M. Madni2

Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA

Future spacecraft sent to explore distant exoplanets must survive dozens of years in

unknown environments and likely suffer from unpredictable fault conditions. Having

velocities approaching a few percent of the speed of light, these vehicles will have but a few

hours of observation before moving on to the next stellar system. With such short

observation times, the multi-year round-trip light time to Earth, and potentially large

number of interesting targets, these spacecraft will need to autonomously take stock of their

health and plan the best observations with the available resources. Several researchers have

proposed maximizing observations by deploying spacecraft swarms. Acting as a system-of-

systems (SoS), swarms can investigate multiple planets as well as accommodate disruptions

from unknown sources of unclear significance. Flexible resiliency contracts have been

proposed as a means for optimizing swarm recovery actions through probabilistic

assessment of multiple response scenarios. A weakness in this approach though is the

underlying assumption that a consistent opinion of health can be reached by the swarm.

Unfortunately, this assumption is violated by so-called Byzantine faults that thwart

establishing interactive consistency across the swarm. Consequently, the swarm cannot

unambiguously determine whether or where to apply recovery responses. This paper

discusses an extension to the probabilistic underpinnings of flexible resiliency contracts that

mitigate the impact of Byzantine faults without requiring additional redundancy typically

employed for Byzantine fault tolerance.

Nomenclature

α = finite set of actions

𝑎 = an action

b = belief state

A, G = contract assumption (pre-condition), guarantee (post-condition)

β = infinite set of belief states

C = contract

i = input

I = set of all possible inputs

FRC = Flexible Resiliency Contract

Λ(𝑏′|𝑏, 𝑎) = Transition function

o = an observation

O = set of all possible observations

POMDP = Partially Observable Markov Decision Process

𝜌(𝑏, 𝑎) = Reward function

𝜋 = policy

s = state

𝜎 = set of all possible states

U = expected utility

1 Senior Systems Engineer, Flight Systems Engineering, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 126-260,

AIAA Associate Fellow

2 Professor, Astronautics, Department of Astronautical Engineering , Los Angeles, California, 90089, AIAA Fellow

American Institute of Aeronautics and Astronautics

2

I. Introduction

AUNCHED into a heliocentric orbit, the Kepler Mission has been surveying a swath of our Milky Way galaxy

since 2009 with the goal of finding Earth-sized planets in or near the habitable zone of their star system. Liquid

water and possibly life might exist on these planets making them intriguing targets for detailed studies at much

closer range. As of June 2016, Kepler has found 2327 exoplanets including rocky, Earth-sized, habitable zone

planets.1 Analysis of Kepler data indicates that there may be upward of 10 billion habitable zone planets within

twelve light years of our solar system2.

 Currently planned missions3-6 can be expected to greatly expand the count of confirmed exoplanets in our galaxy,

while proposed missions such as the High-Definition Space Telescope7 measure atmospheric water vapor, oxygen,

methane, and other organic compounds that are potential evidence of life. Since these missions are designed for the

spacecraft that orbit relatively close to Earth they can only hint at the presence of active biospheres. Exoplanet fly-

bys or probes are needed for confirming active biospheres. However, there are enormous programmatic and

technical challenges to overcome. Some of the major challenges include: which planets to visit; how to propel the

vehicle there; how to navigate; how to communicate; who will be around dozens to a hundred or more years after

launch to receive and process the data; and what to build that survives the trip and operates in what is almost

certainly an unknown and hostile environment? This paper discusses a resiliency23,24 approach for managing

Byzantine fault conditions (described later) that result from the latter challenge.

 Traditional, monolithic spacecraft protected by an assortment of ad hoc, fault-avoidance and fault-tolerance

methods have a high likelihood of failure in missions that are decades-long due, in large part, to the connectivity and

inter-dependence of their subsystems. Moreover, monolithic spacecraft will significantly limit the number of star

systems and planets visited. Spacecraft swarms have been suggested as a viable alternative to increase the

probability of mission success while also enabling more exoplanet visits8-11. Conceptually, a delivery vehicle

deploys a spacecraft swarm when entering a stellar neighborhood. The swarm then marshals its resources for best

achieving mission science objectives while the delivery vehicle continues to its next destination.

 Reaching distant exoplanets within reasonable time periods necessitates achieving velocities approaching

significant fractions of the speed of light. Consider, for example, exploring a star system such as Alpha Centauri

which is 4.37 light-years from Earth. At 10% the speed of light, a swarm will arrive at Alpha Centauri in roughly 44

years and spend about two hours there before moving on. With approximately two hours for observation, disruptions

affecting data collection will necessarily need rapid, autonomous corrective action. Autonomous and opportunistic

planning will go hand-in-hand with autonomous corrective action because in all likelihood we won’t know what to

look at, or what observational resources are functional until the swarm is within close proximity of the star system.

A. Flexible Resiliency Contracts

 Autonomous assessment of the state-of-health of a swarm and restoring functionality under unknown

environmental conditions and unplanned usage bears similarity to a number of bio-inspired systems12-17. A recent

paper18,25 looked at an artificial immune system construct that learns good and bad swarm behavior through

observations made during operation. The construct is based on intelligent software agents that implement flexible

resiliency contracts (FRCs). FRCs extend the concept of invariant contracts which are defined by a pair of

assertions, C = (A, G), in which A is an assumption (pre-condition) made on the environment and G is the guarantee

(post-condition) a system makes if the assumption is met18. More precisely, invariant contracts describe a system

that produces an output from set 𝑜 ∈ {00, 01, … 0𝑜−1} ⊆ 𝑂 when in the state 𝜎 ∈ {𝑠0, 𝑠1, … 𝑠𝑠−1} ⊆ Σ for an input

𝑖 ∈ {𝑖0, 𝑖, … 𝑖𝑖−1} ⊆ I where O is the set of all outputs, Σ is the set of all system states, and I is the set of all inputs.

 Systems defined by invariant contracts are compatible with formal analyses methods that enable rigorous design

and validation. However, inflexible constructs are not

well-matched with unknown and unexpected

disruptions that may result from unpredictable swarm

environments, internal faults, usage, and interactions.

Flexibility is introduced by invoking the resiliency

construct shown in Fig. 1. The resiliency construct

comprises iterations of: sensing the environment and

system status (Sense ≡ assumption); planning actions

that maximize the likelihood of achieving a goal (Plan);

and executing those actions (Act ≡ guarantee). The

environment and system health are sensed after each

action and the planning function determines whether to

L

Figure 1. Resiliency implementation comprises

three components: Sense, Plan, and Act.

Sense Plan Act

American Institute of Aeronautics and Astronautics

3

continue with the current plan if the actions accomplish the desired outcome, or otherwise make changes.

B. Partially Observable Markov Decision Process

 Flexibility is achieved through the use of Partially Observable Markov Decision Processes (POMDP) that

accommodate observable, unobservable, and unknown states. A POMDP models a decision process in which system

dynamics are assumed to be a belief Markovian Decision Process (MDP), a memoryless decision process that

involves transition rewards. A belief MDP comprises the 4-tuple:

− β = infinite set of belief states

− α = finite set of actions

− 𝜌(𝑏, 𝑎) = ∑ 𝑏(𝑠)𝑅(𝑠, 𝑠′𝑎)𝑠∈𝑆 Expected reward at b(s) on transition from s to s’ given 𝑎

− Λ(𝑏′|𝑏, 𝑎) = ∑ Λ(𝑏′|𝑏, 𝑎, 𝑜)Λ(𝑜|𝑎, 𝑏)𝑜∈𝑂 Transition function

in which a belief represents an understanding of a system state, 𝑠 ∈ 𝑆, with uncertainty. The MDP has a policy, π,

which describes how to select actions for a belief state based on maximizing a goal defined by the reward function,

𝜌, within some time period, that is, 𝜋: 𝑠 ∈ 𝑆 → 𝑎 ∈ 𝛼. We define the expected utility of executing π when started

from s as 𝑈𝜋(𝑠). An optimal policy 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑈𝜋(𝑠) maximizes the expected utility.

 Expected utility may be computed iteratively using a number of methods including a dynamic programming

approach in which a discount factor, γ, where 0 ≤ 𝛾 < 1, is used to penalize future rewards and is based on the

“cost” for not taking immediate action. The kth value of 𝑈𝜋(𝑠) is computed iteratively using Eq. (1). The optimal

policy is determined by finding the policy that maximizes 𝑈𝜋𝑖(𝑠) for each policy 𝜋𝑖.

𝑈0
𝜋(𝑠) = 0

𝑈1
𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠))

…

𝑈𝑘
𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑ Λ(𝑠′|𝑠, 𝜋(𝑠))𝑠′ 𝑈𝑘−1

𝜋 (𝑠′) (1)

 In the POMDP, some states are not observable (hidden) and due to imperfect information there are uncertainties

regarding the current system state and the outcome of actions. The FRC approach begins with a naïve model of

system behavior comprising known (designed) states and transitions as well as predicted anomalous states and

transitions. The naïve model is refined over time by observing swarm behavior as actions are taken.

 Post deployment, swarms perform one or more missions defined by mission scenarios. Each scenario comprises

a set of mission phases further refined by a collection of detailed task behaviors allocated to the spacecraft in the

swarm for accomplishing mission objectives. Mission scenarios are defined by instantiating the meta-states and

transitions shown in Fig. 2. After initialization, the swarm transitions to a Planning state within mission operations.

Planning takes stock of swarm health, science goals, risks, and prior knowledge of the stellar system to create an

initial set of mission phases and individual spacecraft tasks. Thereafter, the swarm transitions to Cruise in which

each spacecraft positions itself for making observations. Spacecraft may observe during Cruise and provide the

information collected back to Planning. The swarm may also suffer from faults that require deciding how to best

accomplish a mission or select a secondary mission when the primary mission is not achievable. The swarm enters

Observation when it arrives at its desired locations and begins science data collection.

 Fig. 2 shows that the swarm may return to Cruise between observations or may transition to degraded or unsafe

operation. Fig. 2 includes restoration transitions that may return the swarm to full operational capability after a fault

or may put the swarm into a degraded state by marshalling surviving swarm resources.

 The swarm may return to the Planning state after concluding a mission scenario when there is sufficient time and

surviving resources to carry out another mission. Additionally, Planning may be needed when restarting disrupted or

aborted mission depending on when the disruption occurs during task execution and where the swarm is located

relative to the observations underway. The Planning function may also modify missions as a result of “interesting”

observations. For example, a spacecraft that detects water on an exoplanet may request confirmation from another

spacecraft that has been tasked with observing a different exoplanet. Similarly, a spacecraft might request support

from another spacecraft if a sensor needed for a particular observation has failed, or is found to be untrustworthy.

 Fig. 3 shows the structure of a FRC that implements the transitions shown in Fig. 2. A belief state estimate is

derived from environmental and health sensors and used for evaluating which actions to take as previously

American Institute of Aeronautics and Astronautics

4

described. Actions are mapped into tasks lists for individual spacecraft for execution. The results of action execution

are provided as feedback to the belief state estimation algorithm for evaluating the consequences of actions and

determining needed new actions.

 The actions taken correspond to 𝜋∗ which changes depending on mission, mission phase, and tasks. For example,

in Cruise the primary task for each spacecraft is safely arriving at a specified location. Small thrusters may be

needed to correct trajectories but given the velocity of each vehicle, those corrections must be taken well in advance

of arrival in the stellar neighborhood. If, for any reason, a spacecraft doesn’t achieve the correct trajectory then

policies might replan thruster firings for overcoming whatever condition caused the trajectory error, or when not

possible, replan the mission to be consistent with the achievable trajectory.

 Fig. 4 shows how individual FRC states are combined into an overall estimate of swarm health that triggers

policies having both innate and adaptive responses. A State Estimator updates the belief state by combining

observations of swarm behavior with the current belief state and the action corresponding to the maximum reward

defined by the belief state and policy (Eq. 2).

 b′(sj) = P(sj|o, a, b) =
P(o|sj,a) ∑ P(sj|si, a)b(si)si∈S

∑ P(o|sj,a) ∑ P(sJ|si, o)b(si)si∈Ssj∈S
 (2)

Figure 2. Mission meta-states.

Figure 3. A belief state is estimated from input conditions and swarm execution events. The belief

state is tied to the last actions taken and corresponds to the transitions in Fig. 2.

American Institute of Aeronautics and Astronautics

5

Innate actions are taken for fault conditions detected and verified within individual spacecraft. Innate actions

correspond to invariant contracts that define local fault protection mechanisms. Adaptive responses are taken for

unknown-unknowns following the pattern in Fig. 1. There are two forms of adaptive responses shown in Fig. 4

analogous to vertebrate immune responses. Naïve Adaptive Contracts (NACs) correspond to policy actions that have

been randomly derived but have not yet been used. NACs persist for a finite period of time and are eventually

discarded if not used. NACs become Mature Adaptive Contracts (MACs) after they have been used with positive

results. Mathematically, NACs and MACs differ in the value of 𝑅(𝑠, 𝜋(𝑠)) and NACs are promoted to MACs when

maximizing expected utility.

 Figures 3 and 4 assume that establishing a consistent opinion of state is possible. But there are well-known

conditions that challenge that assumption20, 21.

II. Byzantine Faults

A. Interactive Consistency and Byzantine Faults

 Interactive consistency occurs when all fault-free spacecraft in a swarm arrive at the same conclusion regarding

overall swarm health. A Byzantine fault is one in which a faulty agent sends inconsistent information to different

receivers creating the condition in which healthy spacecraft cannot agree on the state of the swarm, whether a

corrective action is needed, and if needed which action to take. Lamport20 defines two conditions necessary for

interactive consistency: 1) all non-faulty receivers must agree on the data received from a transmitter and 2) if the

transmitter is fault-free then all non-faulty receivers must also arrive at the same data value sent by the transmitter.

 There are three possible fault conditions to consider: 1) a faulty spacecraft may send faulty but detectable

information to fault-free receivers; 2) a faulty spacecraft may send the same faulty information to all fault-free

receivers; and 3) a faulty spacecraft may send different and arbitrary information to different fault-free receivers.

The first condition is easily managed simply by ignoring the faulty information. The second condition may be

masked by relatively simple voting. However, the third condition is considerably more difficult to manage and is

complicated by the presence of multiple faulty transmitters.

 Conditions 1) and 2) result from permanent or transient faults that do not overwhelm or confuse conventional

error monitors. The third condition is caused by faults that are not so severe that they cause complete spacecraft

failure, but are temporally and/or spatially distributed in such a way that neither a single spacecraft nor the swarm

Figure 4. Swarm state blends opinions from FRC agent observations.

Figure 1. Each spacecraft in the swarm manages its health and contributes to an evaluation of

overall swarm resiliency.

American Institute of Aeronautics and Astronautics

6

knows the root cause or whether and how to respond. Environmental effects are the likely culprit for condition 3)

faults.

 It is standard practice to provide shielding and compensation for radiation and thermal effects typically

encountered by spacecraft. However, we cannot be certain that there is sufficient protection and design margin

against the encountered environments or the degradations that will occur in our decades-long mission. A likely

consequence will be increased rates of single-event functional interrupts (SEFI)22. SEFIs cause electronics to reset,

hang, or potentially behave in unpredictable ways when affecting control functions. Resets and hangs are easily

detected and managed. However, asymmetric unpredictable behaviors can potentially lead to simultaneous faulty

transmitters and receivers within the swarm.

 Resetting electronics affected by a SEFI generally clears the problem. However, in high radiation environments

when components are potentially compromised by extended total dose damage, it is likely that most of the swarm

will either be in a fault state or recovering from reset unless other measures are taken. Given that a mission might

have only a few hours for making observations, this outcome is clearly not acceptable. A natural question then is

whether the swarm can be designed to be sufficiently resilient so that it limps along in a high transient upset

environments in which SEFIs trigger multiple, simultaneous Byzantine faults.

 Nearly perfect protection against Byzantine faults is developed in Ref. 20. The solution adds sufficient system

redundancy that a specified number of simultaneous Byzantine faults can be masked. The required redundancy

grows with the number of faults tolerated. The swarm problem though does not necessitate instantaneous, near-

perfect protection. Rather, we only need assurance that the resiliency process represented in Fig. 1 can be carried out

quickly enough so that most of the mission is accomplished. That is, rather than instantaneous masking, our goal is

to compute trajectories using the iteration shown in Fig. 3 that continually sample and correct swarm behavior.

B. Mitigating Byzantine Faults

 There are two obvious questions resulting from the prospect of multiple Byzantine faults: 1) how can the

autonomous FRC agents “know” when interactive consistency isn’t achieved and 2) what should the response be

when consistency is either unknown or known to be compromised? The first question is readily answered by

exchanging opinions as indicated in Fig. 3. While it may not be possible to determine which opinions to trust, it is at

least possible to know that additional information is needed before taking an action. The second question is more

difficult and potentially dire if the wrong decision is taken.

 To begin, the following requirements are allocated to swarm communication20: 1) the communication protocol

assures correct delivery of all messages; messages may contain faulty information but link margins and error

correcting/detecting codes guarantee that received messages are error-free; 2) receiving agents know which

transmitting agent sent a message; transmitting agents will therefore need identification that cannot be forged by a

faulty transmitter; 3) missing messages are detected implying some form of time-out in which the next message

from a transmitting agent is expected within a timing window.

 The first requirement guarantees message syntax, but not semantics. At a minimum, it assures that bit errors due

to a noisy transmission channel are corrected when possible, or an uncorrectable error is detected. The former case

may contribute to interactive inconsistency if the message content is faulty. The latter situation is also interesting

because the faulty message is going to be ignored, effectively removing one opinion from consideration. If other

messages are either semantically faulty, or contain uncorrectable errors, then there might not be enough fault-free

opinions to achieve consistency.

 The second requirement prevents transmitting potentially confusing messages. For example, a faulty spacecraft,

A, sends two messages, one saying, “I’m spacecraft A, and I think I’m healthy and spacecraft B is faulty,” and the

second saying, “I’m spacecraft C, and I think that I’m healthy and A is healthy.” Many options exist for

implementing this requirement including simply adding unique, unforgeable identifiers to each message.

 The second requirement assures timely delivery of opinions which is necessary for guaranteeing that the most

current information is used in estimating state. Interestingly, simple schemes may apply that enable multiple

delivery paths between spacecraft. This has the advantage of maintaining swarm connectivity when subsets of the

swarm are not able to transmit to other subsets as long as all spacecraft belong to one or more subsets that can

connect to the rest of the swarm.

 To see how the last point might work, suppose there are three spacecraft in the swarm, A, B, and C. Now suppose

that A wants to send the message, m A:m. Spacecraft B receives the message and sends it to C which is not in contact

with A as B:A:m. B also sends A and C its own message, n, as B:n. C receives both messages and notices that it does

not have B:A:m or B:n and adds both to its received message list. C then sends out its message, o, as C:o to both A

and B, but since A is out-of-contact with C, C:o does not get to A. However, B receives C:o and sends it to A as

American Institute of Aeronautics and Astronautics

7

B:C:o. As C did before, A notices that it hasn’t seen B:C:o so adds it to its receive list but knowing that it came from

C through B it doesn’t forward back to B.

 Suppose there were another spacecraft, D, in the swarm and that A was in-contact with both B and D. Now

suppose that B sends B:n to both A and D but the message to A arrives too corrupted for error correction to fix the

errors. When D receives B:n though, it will send that to A and C as D:B:n. Since A does not have this message in its

received list, it adds it and can use it in forming its opinion of swarm health. So the algorithm also supports multiple

paths at the expense of multiple, redundant messages.

 Having just defined a resilient communications method, we can now examine how to recognize and manage an

inconsistency. First consider Eq. 2 that defines how the next POMDP belief state is determined after taking an

action. Eq. (2) is solved for each sj and the next action taken corresponds to the policy applied to the highest b′(sj).

But suppose there isn’t a clear “best” belief state or that none of the top candidates have sufficiently high probability

to be trusted. In this case there is an inconsistency although it may not be obvious which FRC agent(s) are

untrustworthy or what actions to take next.

 Let’s look at a situation in which C’s stellar reference unit gets confused by the star field and thinks it’s in the

correct location but is thousands of Km off. B may not know the precise location of C but it might be able to

determine, based on its own position that C is in the wrong place. Suppose that A cannot see C so has no direct

opinion regarding C’s position but based on its location it determines that B is likely where it should be, however, C

thinks it is where it is supposed to be but thinks B is in the wrong place. Although A cannot see C, A knows that C

thinks it is healthy and that B is faulty. A also knows that B thinks it is healthy, and that C is faulty. Similarly, C

knows through B that A thinks it is healthy, and B agrees.

 Using the delivery protocol outlined above and as represented

in Fig. 4, the spacecraft exchange their belief of swarm health.

Each spacecraft then creates a swarm health matrix as shown in

Table 1 that shows the opinion of spacecraft in each row of the

health of the spacecraft in each column. The “-” indicates “no

direct opinion.” From Table 1, it is evident that A is likely healthy

but it is not clear whether B or C is faulty.

 Since the pairwise opinions vindicate A, we use a heuristic to

select which spacecraft are trustworthy and then create a reward that favors selecting opinions from A and penalize

opinions coming from either B or C. To see how that might work, we create a MDP for our example that comprises

three belief states: All Healthy (state 1), B Faulty (state 2), and C Faulty (state 3), and two actions:

take_more_measurements (action 1) and reset_faulty_spacecraft (action 2) as shown in Table 2.

 We compute the expected utility (Eq. 1) and the optimal policy using the mdp_policy_iteration function in the

Matlab MDP toolbox with the results shown in Figure

5. For this example, the best course of action is to

continue collecting measurements while in state 1 but

reset the faulty spacecraft if either in state 2 or state 3.

 Assuming each spacecraft comes to the same

conclusion then B and C will reset themselves and A

will continue mission functions. Of course it is

possible that Table 1 is not identical across the swarm

or that spacecraft do not agree on the action to take.

For example, spacecraft C might decide that it doesn’t

need a reset. As more swarm health observations are

taken then either C eventually forms the correct

opinion of itself and resets or A and B eventually

ignore C and replan their tasks accordingly.

Next we complicate the previous example by adding

another belief state, Ambiguous (state 4) corresponding to

either B or C are faulty – our Byzantine condition. We also

redefine action 2 as “reset_B,” and add a new action 3,

“reset_C.” Based on the pairwise comparisons shown in Table

1 we progressively assign higher rewards for the transition

from state 4 to state 3 until either consistency is achieved or

we discover that we are in or headed into a failed state. In the

latter case, we alter our policy trajectory toward a working or safe state.

𝑈𝜋(𝑠) =

 46.5251

 42.8571

 50.0000

𝜋∗(𝑠)

1

 2

 2

Figure 5. Expected utility and optimal

policy for a simple 3-state, 2-action system.

Table 1. Pairwise Health Opinions

 A B C

A H H -

B H H F

C - F H

Table 2. Example MDP parameters for a 3-state, 2-

action system

𝛬(. , . ,1) =
. 7 . 2 . 1
0 . 7 . 3
0 0 1.0

𝛬(. , . ,2) =
. 7 . 3 0

0 . 8 . 2
0 0 1.0

R(.,1) =
 5
 1
−5

R(.,2) =

−1

 3

 5

𝛾 = .9

American Institute of Aeronautics and Astronautics

8

 The new model parameters are shown in Table 3 and the corresponding Matlab results are shown in Fig. 6 which

are consistent with the observation

that C should be reset in state 4.

Note too that we have included

transition probabilities from states 2

and 3 to state 4 that result from a

reset problem causing a Byzantine

fault condition. However, the

primary difference between these

results and the previous results are

due to adjusting the reward array

consistent with knowledge that A is

most likely good and that A

believes B is also good.

 Of course it might not always

be the case that there are clear

comparison results that drive the

reward values. When there is an

equal likelihood of multiple

trustworthy assets, a strategy might

look at the expected utility for

believing each one and then

choosing the policy with the highest value of 𝑈𝜋(𝑠). If there isn’t a single highest value, then the FRC should

choose one and proceed until either success is achieved or another undesirable state is determined.

III. Conclusion

 There are many difficult technical challenges to solve

before science missions can be sent to distant exoplanets.

Among these are: autonomously planning and replanning

missions as a result of observations and faults; providing

reliable Earth communications; autonomous navigation;

propulsion; and long-term tolerance of space radiation effects.

Several researchers have suggested releasing spacecraft

swarms when arriving in a stellar neighborhood to maximize

data collection and work-around predictable and unpredictable fault conditions that may occur. With round-trip light

times on the order of years to Earth and observation times on the order of hours, spacecraft cannot simply take a

safing action without risking significant loss of “once-in-a-lifetime” data.

 Acting as a system-of-systems (SoS), a swarm can provide resilience to disruptions that will only be known

when they happen. Resilience will comprise traditional fault-avoidance and fault-tolerance but also requires

situational awareness and autonomous decision making that maximizes the chances of success. But decision making

must begin with a consistent and correct understanding of the system state because errors in actions due to an

incorrect assessment can lead to lost opportunities and even total mission failure.

 We discussed a resiliency approach based on agents that implement Flexible Resiliency Contracts. Based on

Partially Observable Markov Decision Processes (POMDP), these contracts implement “Sense-Plan-Act” by

combining swarm status, state, and actions into a probabilistic belief state. The belief state is an input to a policy

evaluation that maximizes expected utility for a set of actions and then chooses the action with the highest utility.

 However, we noted earlier that Byzantine fault conditions could confuse a mechanistic evaluation of state and

action. We have proposed a pre-processing heuristic that evaluates the trustworthiness of status information through

pairwise comparisons. The heuristic increases reward values for actions related to trustworthy assets and reduces

reward values for questionable assets. We have shown through an illustrative example that selecting the proper

reward values lead to making correct choices. Although the heuristic has a major influence on actions taken, the

iterative nature of “Sense-Plan-Act” can tolerate bad choices as long as the time to detect unsafe or tendencies

toward unsafe is small compared to the point of no return. To that end, the heuristic must support minimizing the

worst-case regret in taking an action. The exact nature of a suitable minimax regret algorithm is essential work-to-go

and needs an analysis of decision sensitivities.

𝑈𝜋(𝑠) =

 39.3237

 34.4538

 34.6467

 38.6467

𝜋∗(𝑠)
1

 2

 3

 3

Figure 6. Expected utility and optimal

policy for a 4-state, 3-action system

affected by a Byzantine fault.

Table 3. Example MDP parameters for a 4-state, 3-action system

containing a Byzantine fault.

𝛬(. , . ,1) =

.7 .12 .12 .06

0 .7 0 .3

0 0 .7 .3

0 0 0 1.0

𝛬(. , . ,2) =

.7 .12 .12 .06

.7 .2 0 .1

0 0 .8 .2

0 0 0 1.0

𝛬(. , . ,3) =

.7 .12 .12 .06

0 0 .8 .2

.5 0 .4 .1

.5 0 .4 .1

R(.,1) =

5

1

1

-2

R(.,2) =

0

0

1

2

R(.,3) =

0

0

1

5

𝛾 = .9

American Institute of Aeronautics and Astronautics

9

 In sum, FRCs are rigorously specified and designed resiliency agents that go hand-in-hand with autonomous

mission planning and management. Our approach mimics the behavior of the invertebrate immune system by

preserving safe actions and eliminating those that are either not useful or harmful. We have established the basic

mathematical foundations for FRCs, and have identified future research needed to make these useful in practical

applications.

References
1http://kepler.nasa.gov/
2Petigura, E., Howard, A, and Marcy, G., “Prevalence of Earth-size planets orbiting Sun-like stars,” PNAS, Vol. 110, No. 48,

November 2013, pp. 19273- 19278.
3http://cheops.unibe.ch/
4http://space.mit.edu/TESS/TESS/TESS_Overview.html
5http://www.jwst.nasa.gov/
6http://sci.esa.int/plato/
7http://www.hdstvision.org/report
8Brown, O., and Eremenko, P., “The Value Proposition for Fractionated Spacecraft,” AIAA Space 2006, AIAA 2006-7506, San

Jose, California, September, 2006.
9Bauman, E. “Swarm-Based Concepts for Resilient Autonomous Interstellar Exploration Systems,” INCOSE INSIGHT, Vol. 18,

No. 1, pp. 34-40.
10Mosleh, M., Dalili, K., and Heydari, B., “Optimal Modularity for Fractionated Spacecraft: The Case of System F6,” Procedia

Computer Science, Vol 26, pp. 164-170.
11Curtis, S., Rilee, M., Clark, P., and G. Marr, “Use of Swarm Intelligence in Spacecraft Constellations for Resource Exploration

of the Asteroid Belt,” Third International Workshop on Satellite Constellations and Formation Flying; Pisa, Italy, 2003:24-26
12Dorigo, M., Birattari, M., and Stützle, T., “Ant Colony Optimization – Artificial Ants as a Computational Intelligence

Technique,” IEEE Computational Intelligence Magazine, Nov. 2006, pp. 28-39.
13Montes de Oca, M.M., Stützle, T., Birattari, M., and Dorigo, M., “A Comparison of Particle Swarm Optimization Algorithms

Based on Run-Length Distributions,” ANTS workshop, 2006, pp. 1-12.
14Karaboga, D. and Akay, B., “A Comparative Study of Artificial Bee Colony Algorithm,” Applied Mathematics and

Computation, Vol. 214, No. 1, August 2009.
15Morgan, D., et. al., “Swarm-Keeping Strategies for Spacecraft under J2 and Atmospheric Drag Perturbations,” Journal of

Guidance, Control, and Dynamics, Vol. 35, No. 5, Sept-Oct 2012, pp. 1492-1506.
16Chen, B., “Agent-Based Artificial Immune System Approach for Adaptive Damage Detection in Monitoring Networks,”

Journal of Network and Computer Applications, Vol. 33, No. 6, Nov. 2010, pp. 633-645.
17Chernov, A., Butakova, M., and Gorgoravo, V., “Hybrid Artificial Immune System Approach for Dynamical Agent-Based

Monitoring,” Life Science Journal; Vol. 11, 2014.
18Sievers, M, and Madni, A, “Agent-Based Flexible Design Contracts for Resilient Spacecraft Swarms,” AIAA SciTech, 2016.
19 Nuzzo, P., Sangiovanni-Vincentelli, A., Bresolin, A., Geretti, L., and Villa, T., “A Platform-Based Design Methodology With

Contracts and Related Tools for the Design of Cyber-Physical Systems,” Proc IEEE, Vol. 103, No. 11, September, 2015, pp.

2104-2132.

20Lamport, L., Shoshtak, R., and Pease, M., “The Byzantine Generals Problem,” ACM Transactions on Programming Languages

and Systems, Vol. 4, No. 3, July 1982, pp. 382-401.
21Ryan, C., Heffernan, D., and Leen, G., “Interactive Consistency on a Time-Triggered Real-Time Control Network,” IEEE

Transactions on Industrial Informatics, Vo. 2, No. 4, Nov. 2006, pp. 242-254
22Mutuel, L.H., “Single Event Effects Mitigation Report,” DOT/FAA/TC-15/62, February 2016.
23 Neches, R. and Madni, A.M. “Towards Affordably Adaptable and Effective Systems,” Systems Engineering, Vol. 16, No. 2,

pp. 224-234, Summer 2013.
24 Madni, Azad M., and Scott Jackson. "Towards a conceptual framework for resilience engineering," IEEE Systems Journal, 3.2,

181-191, 2009.
25 Madni, A.M. and Sievers, M. “A Flexible Contract-Based Design Framework for Evaluating System Resilience Approaches

and Mechanisms,” IIE Annual Conference and Expo, ISERC 2015, May 30- June 2, 2015.

